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Abstract
We propose a supersymmetric generalization of Cardy’s equation for consistent
N = 1 superconformal boundary states. We solve this equation for the
superconformal minimal models SM(p/p + 2) with p odd, and thereby
provide a classification of the possible superconformal boundary conditions.
In addition to the Neveu–Schwarz (NS) and Ramond boundary states, there are
ÑS states. The NS and ÑS boundary states are related by a Z2 ‘spin-reversal’
transformation. We treat the tricritical Ising model as an example, and in an
appendix we discuss the (non-superconformal) case of the Ising model.

PACS numbers: 11.25.-w, 11.30.Pb, 05.50.+q

1. Introduction

Two fundamental developments of two-dimensional conformal field theory (CFT) [1, 2] have
been the incorporation of supersymmetry [3] and the extension to manifolds with boundary [4].
The concept of a conformal boundary state [5] is of central importance in the formulation of
boundary CFT. Hence, in string theory [6,7], boundary states also figure prominently [8]. (For
further references and recent reviews of the boundary state formalism for describing D-branes,
see e.g. [9].) The non-supersymmetric (Virasoro algebra) case is well understood [5]: at ‘tree’
level, conformal invariance implies the constraint(

Ln − L̄−n
) |α〉 = 0 (1.1)

on the boundary state |α〉. This equation has a vector space of solutions which is spanned by the
so-called Ishibashi states [10]. For the conformal minimal models, there is an Ishibashi state
|j〉〉 corresponding to each chiral primary field�j(z) (or Virasoro highest-weight representation
with highest weight j ),

|j〉〉 =
∑
N

|j ;N〉 ⊗ U |j ;N〉 (1.2)

where U is an antiunitary operator satisfying U †L̄nU = L̄n, and |j ;N〉 is an orthonormal
basis of the representation.
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Figure 1. Cylinder of length L and circumference R.

There is a further consistency constraint

tr e−RH
open
αβ = 〈α|e−LH closed |β〉 (1.3)

which arises for the model on a flat cylinder of length L and circumference R, as represented
in figure 1. Here H open

αβ = π
L (L0 − c

24 ) is the Hamiltonian in the ‘open’ channel, with

spatial boundary conditions (BCs) denoted by α and β; and H closed = 2π
R

(
L0 + L̄0 − c

12

)
is the Hamiltonian in the ‘closed’ channel. In the string literature, a similar constraint (with
integrations with respect to the corresponding moduli) is known as ‘world-sheet duality’ or
‘open/closed string duality’. The LHS of equation (1.3) can be expressed as

tr e−RH
open
αβ =

∑
i

Niαβχi(q) (1.4)

where the Virasoro characters χi(q) are defined as

χi(q) = tri q
L0− c

24 (1.5)

and q = e−πR/L. Under the modular transformation S, the characters transform according to

χi(q) =
∑
j

Sijχj (q̃) (1.6)

where q̃ = e−4πL/R. Thus,

tr e−RH
open
αβ =

∑
i,j

NiαβSijχj (q̃). (1.7)

Expressing the RHS of equation (1.3) in the Ishibashi basis, one obtains

〈α|e−LH closed |β〉 =
∑
j

〈α|j〉〉〈〈j |β〉χj (q̃) (1.8)

assuming that each representation j appears once in the spectrum of H closed. Comparing
equations (1.7) and (1.8), one arrives at the Cardy equation∑

i

NiαβSij = 〈α|j〉〉〈〈j |β〉. (1.9)

Cardy solved this equation for the consistent boundary states

|k〉 =
∑
j

Skj√
S0j

|j〉〉. (1.10)

Moreover, with the help of the Verlinde formula [11], Cardy identified Nikl as the fusion rule
coefficients for �k × �l → �i . The important result (1.10) provides a classification of the
possible conformal BCs for the minimal models, and gives explicit values for the corresponding
g-factors [12],

gk = 〈〈0|k〉 = Sk0√
S00
. (1.11)
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Renormalization-group (RG) flows between the various conformal BCs have been investigated
in integrable boundary field theories (see e.g. [13–16], and references therein).

The aim of this paper is to generalize the above considerations to the case of N = 1
superconformal field theory [3], which encompasses many important models, including
superstrings. Some progress on this problem has been made by Apikyan and Sahakyan
in [17]. We have been motivated in part by our effort to better understand RG boundary
flows in supersymmetric integrable boundary field theories [18, 19].

It is evident that Cardy’s results cannot be naively carried over to the supersymmetric
case. Indeed, (1.11) would imply that the g-factor of any Ramond boundary state is zero, since
modular S matrix elements between Ramond (R) and Neveu–Schwarz (NS) representations
generally vanish (see equation (2.12) below).

Although for the Virasoro algebra case the consistent boundary states are in one-
to-one correspondence with the irreducible representations, this is no longer true for the
superconformal algebra case. Indeed, we find that in the latter case there are more such
boundary states. This can be traced to the fact that under S modular transformation, R
characters do not transform into NS characters, but rather, into new characters denoted by
ÑS. The NS and ÑS Cardy states are related by a Z2 ‘spin-reversal’ transformation, as are the
‘fixed +’ and ‘fixed −’ boundary states of the Ising model (IM).

The outline of this paper is as follows. In section 2, we briefly review some necessary
results about the N = 1 superconformal algebra, its representations, and the modular
transformation properties of its characters. In section 3, we formulate a supersymmetric
generalization of Cardy’s equation, and we find its solutions. We also identify certain
coefficients which appear in the super Cardy equations with the fusion rule coefficients of
the chiral primary superconformal fields. In section 4 we work out in detail the case of the
tricritical Ising model (TIM). This example also serves as a check on our general formalism,
since the TIM is also a member of the conformal minimal series. In section 5, we briefly
discuss some implications of our results, and mention several possible further generalizations.
In an appendix we present an extended discussion of the case of the IM. Although the IM does
not have superconformal invariance, it does have NS and R sectors, and it provides valuable
insight into how to treat the sectors of superconformal models.

2. Superconformal representation theory

In this section, we first briefly review the superconformal algebra and its representations [3].
We then recall how the characters [20] transform under S modular transformations [21, 22].

The N = 1 superconformal algebra is defined by the (anti-) commutation relations

[Lm,Ln] = (m− n)Lm+n + 1
12c(m

3 −m)δm+n,0

[Lm,Gr ] = ( 1
2m− r)Gm+r

{Gr,Gs} = 2Lr+s + 1
3c(r

2 − 1
4 )δr+s,0

(2.1)

where r, s ∈ Z for the R sector and r, s ∈ Z + 1
2 for the NS sector. The two modings of Gr

are consistent with the Z2 symmetry (Ln → Ln,Gr → −Gr ) of the algebra. Highest-weight
irreducible representations are generated from highest-weight states | 〉 satisfying

L0| 〉 =  | 〉 Ln| 〉 = Gr | 〉 = 0 n > 0 r > 0. (2.2)

For simplicity, we restrict to the superconformal minimal models that are unitary SM(p/p+2),
for which the central charge c has the values

cp = 3

2

(
1 − 8

p(p + 2)

)
p = 3, 4, . . . (2.3)
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and the highest weights  are given by

 (n,m) = (n(p + 2)−mp)2 − 4

8p(p + 2)
+

1

32
(1 − (−1)n+m) (2.4)

where 1 � n � p − 1 and 1 � m � p + 1. The NS representations have n−m even, and the
R representations have n−m odd. Following [21]1 we denote by  NS and  R the following
independent sets of NS and R weights, respectively:

 NS = {
 (n,m)| 1 � m � n � p − 1, n−m even

}
 R = {

 (n,m)| 1 � m � n− 1 for 1 < n � (p − 1)/2; 1 � m � n + 1
for (p + 1)/2 � n � p − 1, n−m odd

}
.

(2.5)

In the R sector, there is a zero mode G0 which commutes with L0. Hence, the highest-
weight states are generally twofold degenerate, | 〉 and G0| 〉. These states have opposite
fermion parity, since G0 anticommutes with the fermion parity operator (−1)F. Due to the
relation G2

0 = L0 − c
24 , if  = c

24 , then G0| 〉 is a null state and decouples, in which case
there is a unique highest-weight state.

For p even, there exists an R representation (n,m) = (
p

2 ,
p+2

2 ) which has weight
 (p2 ,

p+2
2 )

= cp
24 , and so the corresponding highest-weight state is unpaired. For p odd, all

the highest-weight states in the R sector are paired.
We define the characters [20–22]

χNS
i (q) = tri q

L0− c
24 χ ÑS

i (q) = tri (−1)FqL0− c
24 i ∈  NS

χR
i (q) = tri q

L0− c
24 χ R̃

i = tri (−1)FqL0− c
24 i ∈  R.

(2.6)

From the above remarks, it follows that for p odd, χ R̃
i = 0 for all representations i; and for p

even,

χ R̃
i = ±δi, 

(
p
2 ,
p+2

2 )
. (2.7)

The characters transform under the S modular transformation according to [21, 22]

χNS
i (q) =

∑
j∈ NS

S
[NS,NS]
ij χNS

j (q̃)

χ ÑS
i (q) =

∑
j∈ R

S
[ÑS,R]
ij

√
2χR
j (q̃)

√
2χR
i (q) =

∑
j∈ NS

S
[R,ÑS]
ij χ ÑS

j (q̃)

(2.8)

where q̃ = e−4πL/R. As already mentioned in the introduction, the characters χ ÑS
i appear when

the characters χR
i undergo a modular transformation. For the superconformal minimal models

SM(p/p + 2) with p odd, the modular S matrices are given by [21]

S
[NS,NS]
(n,m),(n′,m′) = 4√

p(p + 2)
sin
πnn′

p
sin
πmm′

p + 2
(2.9)

S
[ÑS,R]
(n,m),(n′,m′) = 4√

p(p + 2)
(−1)(n−m)/2 sin

πnn′

p
sin
πmm′

p + 2
(2.10)

S
[R,ÑS]
(n,m),(n′,m′) = 4√

p(p + 2)
(−1)(n

′−m′)/2 sin
πnn′

p
sin
πmm′

p + 2
. (2.11)

1 We generally follow the conventions of Matsuo and Yahikozawa [21], with the main exception that our
characters (2.6) have an extra factor q− c

24 .



Consistent superconformal boundary states 6513

These matrices can be arranged into the matrix S

S =

 S

[NS,NS] 0 0

0 0 S[ÑS,R]

0 S[R,ÑS] 0


 (2.12)

which is real, symmetric and satisfies S2 = I. We do not quote the corresponding expressions
for the case p even, which are somewhat more complicated due to the special representation
(
p

2 ,
p+2

2 ).

3. Consistent boundary states

The full operator algebra of the NS and R superconformal primary fields is nonlocal. We
consider here the so-called spin model [3] which has a local operator algebra. It is obtained by
projecting on even fermion parity (−1)F = 1 in the NS sector, and either even or odd fermion
parity (−1)F = ±1 in the R sector2. For definiteness, we treat only the case with even fermion
parity also in the R sector. Also, for simplicity, we restrict ourselves to models all of whose
representations satisfy  �= c

24 ; that is, we consider only the superconformal minimal models
SM(p/p + 2) with p odd. Moreover, we again assume that the bulk theory is diagonal, with
each representation appearing once.

Our goal is to construct for such spin models the complete set of consistent superconformal
boundary states |α〉, by solving the various constraints which they must obey. The restriction
to even fermion parity implies the constraint

(−1)F|α〉 = |α〉 (3.1)

where here F is the total fermion number of right and left movers. Superconformal invariance
implies the constraints [10, 17](

Ln − L̄−n
) |α〉 = 0

(
Gr + iγ Ḡ−r

) |α〉 = 0 (3.2)

where γ is either +1 or −1. Finally, we impose the further constraint

trNS
1
2 (1 + (−1)F)e−RH

open
αβ + trR

1
2 (1 + (−1)F)e−RH

open
αβ = 〈α|e−LH closed |β〉 (3.3)

for a spin model on the cylinder in figure 1. The projectors 1
2 (1 + (−1)F) project onto states of

even fermion parity in the open channel. The Hamiltonians in the open and closed channels
are (as in the non-supersymmetric case which was reviewed in the introduction) given by
H

open
αβ = π

L (L0 − c
24 ) andH closed = 2π

R

(
L0 + L̄0 − c

12

)
, respectively. This constraint is similar

to the IM constraint (A.32), except without the term involving the projector 1
2 (1 − (−1)F) in

the NS sector.
We first consider the open channel. We define the coefficients niαβ etc by

trNS e−RH
open
αβ =

∑
i∈ NS

niαβχ
NS
i (q)

trNS(−1)Fe−RH
open
αβ =

∑
i∈ NS

ñiαβχ
ÑS
i (q)

trR e−RH
open
αβ =

∑
i∈ R

miαβχ
R
i (q)

trR(−1)Fe−RH
open
αβ =

∑
i∈ R

m̃iαβχ
R̃
i = 0

(3.4)

2 An analysis of consistent boundary states for the so-called fermionic model, which is obtained by keeping only the
NS sector, is given in [23].
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where q = e−πR/L, and the various characters are defined in (2.6). In the last line, we have
made use of our restriction to p odd, together with the result (2.7). It follows that

LHS of equation (3.3) = 1
2

∑
i∈ NS

(
niαβχ

NS
i (q) + ñiαβχ

ÑS
i (q)

)
+ 1

2

∑
i∈ R

miαβχ
R
i (q)

= 1
2

∑
i∈ NS

( ∑
j∈ NS

niαβS
[NS,NS]
ij χNS

j (q̃) +
∑
j∈ R

ñiαβS
[ÑS,R]
ij

√
2χR
j (q̃)

)

+
1

2

∑
i∈ R

∑
j∈ NS

miαβS
[R,ÑS]
ij

1√
2
χ ÑS
j (q̃) (3.5)

where q̃ = e−4πL/R. In passing to the second equality, we have made use of the modular
transformation properties (2.8) of the characters.

Turning now to the closed channel, we recall [10,17] that, corresponding to each irreducible
representation j of the superconformal algebra, one can construct a pair of Ishibashi states
|j±〉〉 satisfying(

Ln − L̄−n
) |j±〉〉 = 0(

Gr ± iḠ−r
) |j±〉〉 = 0.

(3.6)

From the explicit expressions for the Ishibashi states, it is easy to see that the states in the NS
sector have even fermion parity

(−1)F|jNS
± 〉〉 = |jNS

± 〉〉 (3.7)

where (as in equation (3.1)) F is the total fermion number of right and left movers. For the R
sector, the computation of fermion parity is more subtle due to the presence of zero modes [17].
We assume that, in analogy with the IM result (A.25),

(−1)F|jR
±〉〉 = ±|jR

±〉〉. (3.8)

We propose that the set of Ishibashi states {|jNS
± 〉〉, |jR

+ 〉〉} constitutes a basis for the boundary
states. That is,

|α〉 =
∑
j∈ NS

(|jNS
+ 〉〉〈〈jNS

+ |α〉 + |jNS
− 〉〉〈〈jNS

− |α〉) +
∑
j∈ R

|jR
+ 〉〉〈〈jR

+ |α〉. (3.9)

Indeed, equations (3.7) and (3.8) imply that the constraint (3.1) is already satisfied. For a
given value of γ , the constraints (3.2) can be satisfied by keeping in the expansion (3.9) only
the terms involving |jγ 〉〉, i.e. setting 〈〈j−γ |α〉 = 0. Moreover, the number of basis vectors
(twice the number of NS representations plus the number of R representations) is the same as
the dimension of the vector space on which the full modular S matrix (2.12) acts, which we
expect is the number of consistent boundary states. The expansion (3.9) is also motivated by
the corresponding result (A.34) for the IM.

In this basis, we have

RHS of equation (3.3) =
∑
j∈ NS

(〈α|jNS
+ 〉〉〈〈jNS

+ |e−LH closed |jNS
+ 〉〉〈〈jNS

+ |β〉

+〈α|jNS
+ 〉〉〈〈jNS

+ |e−LH closed |jNS
− 〉〉〈〈jNS

− |β〉
+〈α|jNS

− 〉〉〈〈jNS
− |e−LH closed |jNS

+ 〉〉〈〈jNS
+ |β〉

+〈α|jNS
− 〉〉〈〈jNS

− |e−LH closed |jNS
− 〉〉〈〈jNS

− |β〉)
+

∑
j∈ R

〈α|jR
+ 〉〉〈〈jR

+ |e−LH closed |jR
+ 〉〉〈〈jR

+ |β〉
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=
∑
j∈ NS

[(〈α|jNS
+ 〉〉〈〈jNS

+ |β〉 + 〈α|jNS
− 〉〉〈〈jNS

− |β〉)χNS
j (q̃)

+
(〈α|jNS

− 〉〉〈〈jNS
+ |β〉 + 〈α|jNS

+ 〉〉〈〈jNS
− |β〉)χ ÑS

j (q̃)
]

+
∑
j∈ R

〈α|jR
+ 〉〉〈〈jR

+ |β〉χR
j (q̃). (3.10)

In passing to the second equality, we have used the relations

〈〈jNS
± |e−LH closed |jNS

± 〉〉 = χNS
j (q̃)

〈〈jNS
∓ |e−LH closed |jNS

± 〉〉 = χ ÑS
j (q̃)

〈〈jR
±|e−LH closed |jR

±〉〉 = χR
j (q̃)

〈〈jR
∓|e−LH closed |jR

±〉〉 = χ R̃
j (q̃) = 0

(3.11)

which are analogous to the results (A.26) for the IM.
Comparing equations (3.5) and (3.10), we arrive at the ‘super’ Cardy equations (cf (1.9))

1
2

∑
i∈ NS

niαβS
[NS,NS]
ij = 〈α|jNS

+ 〉〉〈〈jNS
+ |β〉 + 〈α|jNS

− 〉〉〈〈jNS
− |β〉

1√
2

∑
i∈ NS

ñiαβS
[ÑS,R]
ij = 〈α|jR

+ 〉〉〈〈jR
+ |β〉

1

2
√

2

∑
i∈ R

miαβS
[R,ÑS]
ij = 〈α|jNS

+ 〉〉〈〈jNS
− |β〉 + 〈α|jNS

− 〉〉〈〈jNS
+ |β〉.

(3.12)

We now proceed to solve these equations, together with the constraints (3.2), for the
consistent superconformal boundary states. Defining the state |0NS〉 as the solution with
ni0NS0NS = ñi0NS0NS = δi0, mi0NS0NS = 0, we obtain

|0NS〉 = 1√
2

∑
j∈ NS

√
S

[NS,NS]
0j |jNS

+ 〉〉 +
1

4
√

2

∑
j∈ R

√
S

[ÑS,R]
0j |jR

+ 〉〉. (3.13)

We then define the states |kNS〉 and |kÑS〉 with k ∈  NS by

ni0NSkNS = ñi0NSkNS = δik mi0NSkNS = 0

ni
0NSkÑS = −ñi

0NSkÑS = δik mi
0NSkÑS = 0

(3.14)

respectively, and we obtain

|kNS〉 = 1√
2

∑
j∈ NS

S
[NS,NS]
kj√
S

[NS,NS]
0j

|jNS
+ 〉〉 +

1
4
√

2

∑
j∈ R

S
[ÑS,R]
kj√
S

[ÑS,R]
0j

|jR
+ 〉〉 (3.15)

|kÑS〉 = 1√
2

∑
j∈ NS

S
[NS,NS]
kj√
S

[NS,NS]
0j

|jNS
+ 〉〉 − 1

4
√

2

∑
j∈ R

S
[ÑS,R]
kj√
S

[ÑS,R]
0j

|jR
+ 〉〉. (3.16)

Finally, we define the states |kR〉 with k ∈  R by

ni0NSkR = ñi0NSkR = 0 mi0NSkR = 2δik (3.17)

and we obtain

|kR〉 =
∑
j∈ NS

S
[R,ÑS]
kj√
S

[NS,NS]
0j

|jNS
− 〉〉. (3.18)
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We shall refer to the states (3.15), (3.16) and (3.18) as the NS, ÑS and R Cardy states,
respectively. These states manifestly satisfy the constraints (3.2), with the R states and the
NS, ÑS states having opposite signs of γ . The NS and ÑS states differ by the Z2 ‘spin-
reversal’ transformation |jNS〉〉 → |jNS〉〉, |jR〉〉 → −|jR〉〉, just like the ‘fixed +’ and ‘fixed
−’ boundary states of the IM (A.36).

The equations (3.12) and their solutions (3.15), (3.16) and (3.18) are the main results of
this paper3. These solutions provide a classification of the possible superconformal BCs for
the superconformal minimal models SM(p/p + 2) with p odd.

The g-factor [12] of a boundary state |α〉 is given by

gα = (〈〈0NS
+ | + 〈〈0NS

− |)|α〉. (3.19)

Hence, the g-factors of the Cardy states are

gkNS = gkÑS = 1√
2

S
[NS,NS]
k0√
S

[NS,NS]
00

(3.20)

gkR = S
[R,ÑS]
k0√
S

[NS,NS]
00

. (3.21)

We see from (3.20) that, for an NS state, the naive use of the modular S matrix (2.9) in the
original Cardy result (1.11) would give a g-factor which is a factor

√
2 too big. Moreover, the

g-factor (3.21) of an R state does not generally vanish.
As in the non-supersymmetric case, the various coefficients niαβ etc in equation (3.4) can

now be expressed in terms of modular S matrices and be related to fusion rule coefficients.
Indeed, by substituting the expression (3.15) for two NS Cardy states |kNS〉 and |lNS〉 back into
the super Cardy formula (3.12), we obtain

nikNSlNS =
∑
j∈ NS

S
[NS,NS]
kj S

[NS,NS]
lj (S[NS,NS])−1

ji

S
[NS,NS]
0j

ñikNSlNS =
∑
j∈ R

S
[ÑS,R]
kj S

[ÑS,R]
lj (S[ÑS,R])−1

ji

S
[ÑS,R]
0j

mikNSlNS = 0.

(3.22)

From the work [24] (see also [25]) on a generalized Verlinde formula, we can identify ni
kNSlNS

as the fusion rule coefficient for�NS
k ×�NS

l → �NS
i . Similarly, for two R Cardy states (3.18),

we obtain

nikRlR = 2
∑
j∈ NS

S
[R,ÑS]
kj S

[R,ÑS]
lj (S[NS,NS])−1

ji

S
[NS,NS]
0j

ñikRlR = mikRlR = 0

(3.23)

and we identify ni
kRlR as the fusion rule coefficient for �R

k ×�R
l → �NS

i . Finally, for one NS
state and one R state, we obtain

mikNSlR = 2
∑
j∈ NS

S
[NS,NS]
kj S

[R,ÑS]
lj (S[R,ÑS])−1

ji

S
[NS,NS]
0j

nikNSlR = ñikNSlR = 0

(3.24)

3 In [17] a different set of equations is proposed, which gives the NS states (3.15), but not the ÑS and R states (3.16),
(3.18).
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Table 1. Kac table for SM(3/5).

7
16

1
10

3
80 0

0 3
80

1
10

7
16

and we identify mi
kNSlR as the fusion rule coefficient for �NS

k × �R
l → �R

i . The results for
the coefficients involving ÑS states (3.16) are very similar to those for the corresponding NS
states.

4. Tricritical Ising model

As an example of the general formalism presented in the previous section, we now work out in
detail the first nontrivial case: namely, the superconformal minimal model SM(3/5) (p = 3),
which has been identified [3] as the TIM. This model is equivalent to the conformal minimal
model M(4/5), for which the Cardy states are already known [5, 14]. Hence, this example
also serves as a valuable check on our general formalism.

The Kac table for SM(3/5), which is obtained using equation (2.4), is given in table 1.
The modular S matrix is (2.9)–(2.12)

S =




2a 2b 0 0 0 0
2b −2a 0 0 0 0
0 0 0 0

√
2c

√
2d

0 0 0 0 −√
2d

√
2c

0 0
√

2c −√
2d 0 0

0 0
√

2d
√

2c 0 0


 (4.1)

where the rows and columns are labelled by the highest weights (0NS, 1
10

NS
, 0ÑS, 1

10
ÑS
, 7

16
R
, 3

80
R
),

and where

a = 1
2

√
1

10 (5 −
√

5) b = 1
2

√
1

10 (5 +
√

5)

c = 1
2

√
1
5 (5 −

√
5) d = 1

2

√
1
5 (5 +

√
5).

(4.2)

According to our results (3.15), (3.16), (3.18), there are six Cardy states, given by

|0NS〉 = √
a|0NS

+ 〉〉 +
√
b| 1

10

NS

+
〉〉 +

√
c| 7

16

R

+
〉〉 +

√
d| 3

80

R

+
〉〉

|0ÑS〉 = √
a|0NS

+ 〉〉 +
√
b| 1

10

NS

+
〉〉 − √

c| 7
16

R

+
〉〉 −

√
d| 3

80

R

+
〉〉

| 1
10

NS〉 = b√
a
|0NS

+ 〉〉 − a√
b
| 1

10

NS

+
〉〉 − d√

c
| 7

16

R

+
〉〉 +

c√
d

| 3
80

R

+
〉〉

| 1
10

ÑS〉 = b√
a
|0NS

+ 〉〉 − a√
b
| 1

10

NS

+
〉〉 +

d√
c
| 7

16

R

+
〉〉 − c√

d
| 3

80

R

+
〉〉

| 7
16

R〉 = c√
a
|0NS

− 〉〉 − d√
b
| 1

10

NS

− 〉〉

| 3
80

R〉 = d√
a
|0NS

− 〉〉 +
c√
b
| 1

10

NS

− 〉〉.

(4.3)

Using (3.19), we obtain the g-factors

g0NS = g0ÑS = √
a g 1

10
NS = g 1

10
ÑS = b√

a
g 7

16
R = c√

a
g 3

80
R = d√

a
. (4.4)

Let us compare these results with those [5, 14] obtained from the M(4/5) description.
The M(4/5) Kac table is given in table 2.
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Table 2. Kac table for M(4/5).

3
2

3
5

1
10 0

7
16

3
80

3
80

7
16

0 1
10

3
5

3
2

The modular S matrix is

S =




a b b a c d

b −a −a b −d c

b −a −a b d −c
a b b a −c −d
c −d d −c 0 0
d c −c −d 0 0


 (4.5)

where the rows and columns are labelled by the highest weights (0, 1
10 ,

3
5 ,

3
2 ,

7
16 ,

3
80 ), and a–d

are given by (4.2). As follows from (1.10), the Cardy states are given by4

|0〉 = √
a|0〉〉 +

√
b| 1

10 〉〉 +
√
b| 3

5 〉〉 +
√
a| 3

2 〉〉 +
√
c| 7

16 〉〉 +
√
d| 3

80 〉〉
| 3

2 〉 = √
a|0〉〉 +

√
b| 1

10 〉〉 +
√
b| 3

5 〉〉 +
√
a| 3

2 〉〉 − √
c| 7

16 〉〉 −
√
d| 3

80 〉〉
| 1

10 〉 = b√
a
|0〉〉 − a√

b
| 1

10 〉〉 − a√
b
| 3

5 〉〉 +
b√
a
| 3

2 〉〉 − d√
c
| 7

16 〉〉 +
c√
d

| 3
80 〉〉

| 3
5 〉 = b√

a
|0〉〉 − a√

b
| 1

10 〉〉 − a√
b
| 3

5 〉〉 +
b√
a
| 3

2 〉〉 +
d√
c
| 7

16 〉〉 − c√
d

| 3
80 〉〉

| 7
16 〉 = c√

a
|0〉〉 − d√

b
| 1

10 〉〉 +
d√
b
| 3

5 〉〉 − c√
a
| 3

2 〉〉

| 3
80 〉 = d√

a
|0〉〉 +

c√
b
| 1

10 〉〉 − c√
b
| 3

5 〉〉 − d√
a
| 3

2 〉〉.

(4.6)

We observe that the two modular S matrices (4.1) and (4.5) are related by a unitary
transformation, due to the relation of the corresponding characters [21]

χNS
0 (q) = χ0(q) + χ 3

2
(q) χ ÑS

0 (q) = χ0(q)− χ 3
2
(q)

χNS
1

10
(q) = χ 1

10
(q) + χ 3

5
(q) χ ÑS

1
10
(q) = χ 1

10
(q)− χ 3

5
(q)

χR
7
16
(q) = χ 7

16
(q) χR

3
80
(q) = χ 3

80
(q).

(4.7)

Moreover, the Cardy states (4.3) and (4.6) can be seen to coincide, upon identifying the
Ishibashi states

|0NS
± 〉〉 = |0〉〉 ± | 3

2 〉〉 | 1
10

NS

± 〉〉 = | 1
10 〉〉 ± | 3

5 〉〉 | 7
16

R

+
〉〉 = | 7

16 〉〉 | 3
80

R

+
〉〉 = | 3

80 〉〉. (4.8)

Evidently, whether we use the M(4/5) or SM(3/5) description, the Hamiltonian is the same,
and so are the Cardy states and corresponding g factors. The two descriptions correspond to
two equivalent bases.

5. Discussion

We have proposed (3.12) a supersymmetric generalization of Cardy’s equation, and we have
solved it for the consistent superconformal boundary states (3.15), (3.16), (3.18), thereby

4 Our notation is related to Chim’s [14] C =
√

sin(π/5)√
5

, η =
√

sin(2π/5)
sin(π/5) by

a = C2 b = C2η2 c = C2
√

2 d = C2η2
√

2.
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classifying the possible superconformal BCs. In particular, there are ÑS boundary states in
addition to the NS and R states.

Having a better understanding of BCs in boundary superconformal field theories, one is
in a better position to investigate integrable perturbations of these theories, and treat problems
such as RG boundary flows.

For simplicity, we have restricted ourselves here to the unitary superconformal minimal
models SM(p/p + 2) with p odd. It should be possible to extend our analysis to the models
with p even, and, in fact, to general (nonunitary) models SM(p/q). Also, a similar analysis
should be possible for N = 2 superconformal models, which are important for superstring
compactifications with spacetime supersymmetry [26, 27].
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Appendix. Ising model

Although the critical IM (i.e. the conformal minimal model M(3/4)) does not have
superconformal symmetry, it does have NS and R sectors. Here we work out explicitly how
these sectors ‘transform’ between the open and closed channels of the cylinder. Because the IM
is a free-field theory, the computations are particularly simple. Nevertheless, this exercise is
useful, since it gives insight into how to treat the sectors of a superconformal model. Although
the IM on a cylinder has already been studied extensively [5, 28–30], this particular aspect
does not seem to have been emphasized before.

The critical two-dimensional IM is described by a free Majorana spinor field, whose two
components we denote byψ(x, y) and ψ̄(x, y). We consider this model on the cylinder shown
in figure 1, with x ∈ [0, L] the coordinate along the axis, and y ∈ [0,R] the coordinate along
the circumference.

A.1. Open channel

In the open channel, we regard x as the space coordinate and y as the time coordinate. The time
coordinate thus has period R, corresponding to the temperature T = 1/R. The conformally
invariant spatial BCs are [28]

ψ(0, y) + aiψ̄(0, y) = 0 ψ(L, y)− biψ̄(L, y) = 0 (A.1)

where a, b = +1 corresponds to ‘fixed’ BCs, and a, b = −1 corresponds to ‘free’ BCs.
Our first task is to find appropriate mode expansions for the fields ψ and ψ̄ . To this end,

we recall that the overall relative sign between these fields is a matter of convention. We can
therefore redefine ψ̄(x, y) such that

ψ(0, y) = iψ̄(0, y) (A.2)

which implies

ψ(L, y) = −i
b

a
ψ̄(L, y). (A.3)
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Proceeding as in the case of the superstring [6], we extend the definition of x to [−L, L] and
define the new field

.(x, y) =
{
ψ(x, y) if x ∈ [0, L]
iψ̄(−x, y) if x ∈ [−L, 0].

(A.4)

This definition is consistent by virtue of equation (A.2). It follows that .(x, y) obeys the
(quasi-) periodicity condition

.(L, y) = −b
a
.(−L, y). (A.5)

Thus, . is periodic (R) if a = −b, and . is antiperiodic (NS) if a = b. Note that a given
set (a, b) of BCs is compatible with only one (R or NS) sector. The field . has the standard
mode expansion

.(x, y) = 1√
2L

∑
k

bke
−i πL k(x+iy) {bk, bl} = δk+l,0 (A.6)

with k ∈ Z for R, and k ∈ Z + 1
2 for NS. It follows that the sought-after mode expansions for

ψ and ψ̄ are

ψ(x, y) = 1√
2L

∑
k

bke
−i πL k(x+iy)

ψ̄(x, y) = − i√
2L

∑
k

bke
−i πL k(−x+iy).

(A.7)

There is only one independent set of modes {bk} in the open channel.
The Hamiltonian H open is

H open = π

L

(
e0 +

∑
k>0

kb−kbk

)
= π

L

(
L0 − c

24

)
(A.8)

with

eNS
0 = − 1

48 eR
0 = 1

24 (A.9)

and c = 1
2 . Standard computations give the partition functions

trNS e−RH open = q− 1
48

∞∏
n=0

(
1 + q

1
2 +n

)
trNS(−1)Fe−RH open = q− 1

48

∞∏
n=0

(
1 − q 1

2 +n
)

trR e−RH open = 2q
1

24

∞∏
n=1

(
1 + qn

)
trR(−1)Fe−RH open = 0

(A.10)

where q = e−πR/L and F is the fermion number operator. For the case of the IM, the
Virasoro algebra has three irreducible representations with highest weights 0, 1/2, 1/16; the
corresponding characters (1.5) are given by (see, e.g. [2])

χ0(q) = 1
2q

− 1
48

( ∞∏
n=0

(
1 + q

1
2 +n

)
+

∞∏
n=0

(
1 − q 1

2 +n
))

χ 1
2
(q) = 1

2q
− 1

48

( ∞∏
n=0

(
1 + q

1
2 +n

) −
∞∏
n=0

(
1 − q 1

2 +n
))

χ 1
16
(q) = q 1

24

∞∏
n=1

(1 + qn).

(A.11)
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The partition functions therefore have the following expressions in terms of characters:

trNS e−RH open = χ0(q) + χ 1
2
(q)

trNS(−1)Fe−RH open = χ0(q)− χ 1
2
(q)

trR e−RH open = 2χ 1
16
(q).

(A.12)

The modular transformation law (1.6) for the characters, together with the explicit modular S
matrix for the case of the IM (see, e.g. [5]), imply

χ0(q) + χ 1
2
(q) = χ0(q̃) + χ 1

2
(q̃)

χ0(q)− χ 1
2
(q) =

√
2χ 1

16
(q̃)

χ 1
16
(q) = 1√

2

(
χ0(q̃)− χ 1

2
(q̃)

) (A.13)

where q̃ = e−4πL/R. We conclude that the partition functions are given by

trNS e−RH open = χ0(q̃) + χ 1
2
(q̃)

trNS(−1)Fe−RH open =
√

2χ 1
16
(q̃)

trR e−RH open =
√

2
(
χ0(q̃)− χ 1

2
(q̃)

)
trR(−1)Fe−RH open = 0.

(A.14)

A.2. Closed channel

In the closed channel, we regard x as the time coordinate and y as the space coordinate. Since
y is periodic, the fields ψ and ψ̄ can be either periodic (R) or anti-periodic (NS). These fields
have the standard mode expansions

ψ(x, y) = 1√
R

∑
k

ake
−i 2π

R k(y−ix) {ak, al} = δk+l,0

ψ̄(x, y) = 1√
R

∑
k

āke
−i 2π

R k(−y−ix) {āk, āl} = δk+l,0 {ak, āl} = 0
(A.15)

with k ∈ Z for R, and k ∈ Z + 1
2 for NS. There are two independent sets of modes in the closed

channel.
The Hamiltonian H closed is

H closed = 2π

R

(
2e0 +

∑
k>0

k (a−kak + ā−kāk)
)

= 2π

R

(
L0 + L̄0 − c

12

)
(A.16)

where again k ∈ Z for R, k ∈ Z + 1
2 for NS and e0 is given in (A.9).

The BCs (A.2), (A.3) now correspond to initial and final conditions on states. Expressing
these conditions in terms of modes, we are led to define (up to normalization) the boundary
kets |B±〉 and the corresponding bras 〈B±| as the solutions of the constraints [8]

(ak − iγ ā−k) |Bγ 〉 = 0 〈Bγ | (a−k + iγ āk) = 0 (A.17)

where γ = ±1. The solutions in the NS sector are given by

|BNS
γ 〉 = e

iγ
∑∞
k= 1

2
a−k ā−k |0〉 〈BNS

γ | = 〈0|e−iγ
∑∞
k= 1

2
ākak

(A.18)

where the NS vacuum state |0〉 satisfies a−k|0〉 = 0, ā−k|0〉 = 0 for k > 0. These states have
even fermion parity

(−1)F|BNS
γ 〉 = |BNS

γ 〉 (A.19)
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where F is now the total fermion number operator in the NS sector,

F =
∞∑
k= 1

2

(a−kak + ā−kāk) . (A.20)

The solutions of (A.17) in the R sector are given by

|BR
γ 〉 = eiγ

∑∞
k=1 a−k ā−k |γ 〉 〈BR

γ | = 〈γ |e−iγ
∑∞
k=1 ākak (A.21)

where the degenerate R vacuum states |±〉 satisfy a−k|±〉 = 0, ā−k|±〉 = 0 for k > 0, as well
as

(a0 − iγ ā0) |γ 〉 = 0. (A.22)

An explicit representation for the zero modes is (see e.g. [2, 30])

a0|±〉 = 1√
2

e±i π4 |∓〉 ā0|±〉 = 1√
2

e∓i π4 |∓〉 (A.23)

using which one can readily verify (A.22). Moreover, (2ia0ā0) |±〉 = ±|±〉. The total fermion
parity operator (−1)F in the R sector is given by

(−1)F = (2ia0ā0) eiπ
∑∞
k=1(a−kak+ā−k āk) (A.24)

(we choose the sign so that |+〉 has (−1)F = 1), and thus, the boundary states satisfy

(−1)F|BR
±〉 = ±|BR

±〉. (A.25)

Using standard techniques, we find

〈BNS
± |e−LH closed |BNS

± 〉 = q̃− 1
48

∞∏
n=0

(
1 + q̃

1
2 +n

) = χ0(q̃) + χ 1
2
(q̃)

〈BNS
∓ |e−LH closed |BNS

± 〉 = q̃− 1
48

∞∏
n=0

(
1 − q̃ 1

2 +n
) = χ0(q̃)− χ 1

2
(q̃)

〈BR
±|e−LH closed |BR

±〉 = q̃ 1
24

∞∏
n=1

(
1 + q̃n

) = χ 1
16
(q̃)

〈BR
∓|e−LH closed |BR

±〉 = 0.

(A.26)

Recalling the results (A.14) from the open channel, we obtain the sought-after relations

trNS e−RH open = 〈BNS
± |e−LH closed |BNS

± 〉
trNS(−1)Fe−RH open =

√
2〈BR

±|e−LH closed |BR
±〉

trR e−RH open =
√

2〈BNS
∓ |e−LH closed |BNS

± 〉
trR(−1)Fe−RH open = 0 = 〈BR

∓|e−LH closed |BR
±〉

(A.27)

which show explicitly how the NS and R sectors ‘transform’ between the open and closed
channels of the cylinder5. Similar results are known in string theory.

We conclude this subsection by noting that the boundary states (A.18), (A.21) are closely
related to the Ishibashi states (1.2). Namely,

|0〉〉 = 1
2

(|BNS
+ 〉 + |BNS

− 〉) | 1
2 〉〉 = 1

2

(|BNS
+ 〉 − |BNS

− 〉) | 1
16 〉〉 = |BR

+ 〉. (A.28)

Indeed, recalling that the boundary states satisfy (A.17) and that

Ln = 1

2

∑
k

(
k +

n

2

)
: a−kan+k : L̄n = 1

2

∑
k

(
k +

n

2

)
: ā−kān+k : (A.29)

5 Numerical factors appear in these relations because the NS and R sectors are not irreducible representations of the
Virasoro algebra and also the states |BNS± 〉 are not properly normalized (see equations (A.28) and (A.30) below).
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one can easily show that the boundary states satisfy the constraint (1.1). Moreover, expanding
the exponentials in the expressions (A.18), (A.21) and comparing the leading terms with (1.2),
one can infer (A.28). Regarding the Ishibashi states as orthonormal vectors (i, j) = δij , it
follows from (A.28) that the boundary states have the normalization(

BNS
± , B

NS
±

) = 2
(
BR

±, B
R
±
) = 1. (A.30)

Strictly speaking, the Ishibashi states and boundary states |B±〉 are not normalizable. However,
one can define an inner product [5, 10] and argue(

BNS
± , B

NS
±

)
(0, 0)

= lim
q→1

〈BNS
± |qL0+L̄0 |BNS

± 〉
〈〈0|qL0+L̄0 |0〉〉 = lim

q→1

χ0(q
2) + χ 1

2
(q2)

χ0(q2)
= 2. (A.31)

A.3. Consistent boundary states

Finally, it is also instructive to rederive Cardy’s results for the consistent IM boundary states
in our basis |B±〉. We begin by rewriting the fundamental consistency constraint (1.3) as

trNS
1
2 (1 + (−1)F)e−RH

open
αβ + trNS

1
2 (1 − (−1)F)e−RH

open
αβ

+ trR
1
2 (1 + (−1)F)e−RH

open
αβ = 〈α|e−LH closed |β〉. (A.32)

From the results (A.12), it is evident that

trNS
1
2 (1 + (−1)F)e−RH

open
αβ = N0

αβχ0(q)

trNS
1
2 (1 − (−1)F)e−RH

open
αβ = N

1
2
αβχ 1

2
(q)

trR
1
2 (1 + (−1)F)e−RH

open
αβ = N

1
16
αβχ 1

16
(q)

(A.33)

and so the LHS of (A.32) is indeed equal to
∑
i N

i
αβχi(q). In the RHS of (A.32), we expand

the boundary states in the basis |B±〉 using

|α〉 = 1
2

(|BNS
+ 〉〈BNS

+ |α〉 + |BNS
− 〉〈BNS

− |α〉) + |BR
+ 〉〈BR

+ |α〉 (A.34)

keeping in mind the normalization (A.30). Then, making use also of the relations (A.27), we
arrive at the Cardy equations

N0
αβ = 1

4
〈α|BNS

+ 〉〈BNS
+ |β〉 +

1

4
〈α|BNS

− 〉〈BNS
− |β〉 +

1√
2
〈α|BR

+ 〉〈BR
+ |β〉

N
1
2
αβ = 1

4
〈α|BNS

+ 〉〈BNS
+ |β〉 +

1

4
〈α|BNS

− 〉〈BNS
− |β〉 − 1√

2
〈α|BR

+ 〉〈BR
+ |β〉

N
1
16
αβ = 1

2
√

2
〈α|BNS

+ 〉〈BNS
− |β〉 +

1

2
√

2
〈α|BNS

− 〉〈BNS
+ |β〉.

(A.35)

Following Cardy [5], we define the states |k〉 by Ni0k = δik , and we obtain

|0〉 = 1√
2
|BNS

− 〉 +
1

4
√

2
|BR

+ 〉

| 1
2 〉 = 1√

2
|BNS

− 〉 − 1
4
√

2
|BR

+ 〉
| 1

16 〉 = |BNS
+ 〉.

(A.36)

These states correspond to the BCs ‘fixed +’, ‘fixed −’ and ‘free’, respectively. The g-
factor [12] of a boundary state |α〉 is given by

gα = 〈〈0|α〉 = 1
2

(〈BNS
+ | + 〈BNS

− |)|α〉. (A.37)

We therefore obtain (again remembering the normalization (A.30)) the well known results

g0 = g 1
2

= 1√
2

g 1
16

= 1. (A.38)



6524 R I Nepomechie

References

[1] Belavin A A, Polyakov A M and Zamolodchikov A B 1984 Nucl. Phys. B 241 333
Zamolodchikov A B and Zamolodchikov Al B 1989 Sov. Sci. Rev. A 10 269

[2] Ginsparg P 1989 Fields, Strings and Critical Phenomena (Amsterdam: Elsevier)
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